Embedded Computing: It’s about Brilliant Machines

Fractal Realms series. Backdrop of fractal elements, grids and symbols on the subject of education, science and technology

Embedded Computing: It’s about Brilliant Machines

There brilliant machines can deliver processing powers in GFLOPS

By Ian McMurray, Abaco Systems

There’s a major transformation taking place in industry – and it’s being enabled by brilliant machines.

What are these “brilliant machines”? In many cases, they’re a whole range of equipment types that have embedded computing subsystems at their heart. These subsystems deliver processing power that can run to hundreds of GFLOPS – often enabled by GPGPU (general purpose processing on graphics processing units) technology with its massively parallel architecture. That’s what enables Abaco’s mCOM10-K1 rugged COM Express module to deliver 326 GFLOPS of processing power — yet consume 10 watts or less.

Why do they need such incredible processing power? Simply because, in the future, these brilliant machines will be equipped with, or have access to, multiple sensors of different types, collecting enormous amounts of data that needs to be captured, processed, analyzed, stored and transmitted.

The transformation noted previously is all about the big data” that is capable of revolutionizing how decisions are made. Those sensors are generating that data – at greater frequency and at higher resolutions. Organizations are using it to derive significant value through advanced analytics that can, for example, substantially increase reliability, uptime or productivity. With these intelligent insights, decision makers can drive improved design, operations, and proactive maintenance as well as higher quality service and safety.

The importance of SWaP

These brilliant machines are also small and lightweight, enabling them to be deployed in spaces that are highly constrained. These days, the focus is not only on price/performance – but also SWaP. The size, weight and power requirements of a system have an increasingly vital role in determining its suitability for a given application.

And: these brilliant machines are also rugged, allowing them to function in challenging environments that are subject to extremes of shock, vibration, temperature, and survive moisture and contaminant ingress. Think energy exploration, transportation, heavy industry and so on. They are designed to operate right out at the furthest edges of the network.

That ruggedness is vital. These new generations of systems will become increasingly mission-critical. Failure cannot be tolerated. In the case of Abaco Systems, we’re taking what we’ve learned from our work with the world’s armed forces, where “mission critical” invariably means “a matter of life and death”. Abaco rugged embedded computing is deployed in submarines, helicopters, tanks, fighter aircraft, and so on – and we’re applying the same expertise to rugged embedded computing for challenging industrial environments.

The trick is to connect machines, data and people – and rugged embedded computing has a vital role to play in that. Leading-edge embedded computing is taking open standards to maximize interoperability technologies and allying those to industry standard technologies that are driving the world’s most capable commercial data centers – and deploying them in places that don’t have the benefit of air conditioning or a crew of engineers on standby.

Many of those brilliant machines are already in place – and the vectors are clear. Increased processing performance will be delivered in smaller, lighter enclosures that consume minimal power and that can withstand anything that industry can throw at them. These are exciting times for embedded computing.